VCU, Department of Computer Science
CMSC 302
Sets
Vojislav Kecman

09/02/2016

Introduction to Set Theory (§2.1)

- A set is a new type of structure, representing an unordered collection (group, plurality) of zero or more distinct (different) objects.
- Set theory deals with operations between, relations among, and statements about sets.
- Sets are ubiquitous (universal) in computer software systems.
- All of mathematics can be defined in terms of some form of set theory (using predicate logic).

Basic notations for sets

- For sets, we'll use variables S, T, U, \ldots
- We can denote a set S in writing by listing all of its elements in curly braces:
is the set of whatever 3 objects are denoted by a, b, c.
- Set builder notation: For any proposition $P(x)$ over any universe of discourse, $\{x \mid P(x)\}$ is the set of all x such that $P(x)$.

Basic properties of sets

- Sets are inherently unordered:
- No matter what objects a, b, and c denote,
$\{a, b, c\}=\{a, c, b\}=\{b, a, c\}=$
$\{b, c, a\}=\{c, a, b\}=\{c, b, a\}$.
- All elements are distinct (unequal); multiple listings make no difference!
- If $a=b$, then $\{a, b, c\}=\{a, c\}=\{b, c\}=$ $\{a, a, b, a, b, c, c, c, c\}$.
- This set contains (at most) 2 elements!

Definition of Set Equality

- Two sets are declared to be equal if and only if they contain exactly the same elements.
- In particular, it does not matter how the set is defined or denoted.
- For example:

The set $\{1,2,3,4\}$
$=\{x \mid x$ is an integer where $x>0$ and $x<5\}=$ $\{x \mid x$ is a positive integer whose square is >0 and $<25\}$

Infinite Sets

- Conceptually, sets may be infinite (i.e., not finite, without end, unending).
- Symbols for some special infinite sets: $\mathbf{N}=\{0,1,2, \ldots\} \quad$ The Natural numbers. $Z=\{\ldots,-2,-1,0,1,2, \ldots\}$ The Zntegers. R = The "Real" numbers, such as
374.1828471929498181917281943125..
- "Blackboard Bold" or double-struck font ($\mathbb{N}, \mathbb{Z}, \mathbb{R}$) is also often used for these special number sets.
- Infinite sets come in different sizes!

09/02/2016
More on this after module \#4 (functions).

Basic Set Relations: Member of

- Def. $x \in S$ (" x is in S ") is the proposition that object x is an \in lement or member of set S. -e.g. $3 \in \mathbf{N}$, " a " $\in\{x \mid x$ is a letter of the alphabet $\}$
- Can define set equality in terms of \in relation: $\forall S, T: S=T \leftrightarrow(\forall x: x \in S \leftrightarrow x \in T)$
"Two sets are equal iff they have all the same members."
- $x \notin S: \equiv \neg(x \in S) \quad$ " x is not in S "

The Empty Set

- Def. \varnothing ("null", "the empty set") is the unique set that contains no elements whatsoever.
- $\varnothing=\{ \}=\{x \mid$ False $\}$
- No matter the domain of discourse, we have:
- Axiom. $\neg \exists x: x \in \varnothing$.

09/02/2016

Proper (Strict) Subsets \& Supersets

- Def. $S \subset T$ (" S is a proper subset of T ") means that $S \subseteq T$ but $T \nsubseteq S$.
i.e. there exists at least one element of T not contained in S

Venn Diagram equivalent of $S \subset T$
09/02/2016

Subset and Superset Relations

Def. $S \subseteq T$ (" S is a subset of T ", also pronounced S is contained in T) means that every element of S is also an element of T.

- $S \subseteq T \Leftrightarrow \forall x(x \in S \rightarrow x \in T)$
- $\varnothing \subseteq S, S \subseteq S$.

Def. $S \supseteq T$ (" S is a superset of T ", also pronounced S includes T) means $T \subseteq S$.

- Note $S=T \Leftrightarrow S \subseteq T \wedge S \supseteq T$.
- $S \nsubseteq T$ means $\neg(S \subseteq T)$, i.e. $\exists x(x \in S \wedge x \notin T)$

09/02/2016

Proper (Strict) Subsets \& Supersets

Example:

Consider a set $\{a, b, c, d, e\}$.

Then sets $\{\mathrm{d}, \mathrm{b}, \mathrm{a}\},\{\mathrm{c}, \mathrm{e}\},\{\mathrm{e}\}$ and \varnothing are proper subsets
but, $\quad\{a, b, f\},\{k\}$ and $\{e, b, a, d, c\}$ are not!

09/02/2016

Sets Are Objects, Too!

- The objects that are elements of a set may themselves be sets.
- E.g. let $S=\{x \mid x \subseteq\{1,2,3\}\}$ then $S=\{\varnothing$,
$\{1\},\{2\},\{3\}$,
$\{1,2\},\{1,3\},\{2,3\}$,
\{1,2,3\}
- $\}$
- Note that $1 \neq\{1\} \neq\{\{1\}\}$!!!!

09/02/2016

Cardinality and Finiteness

Def. |S| (read "the cardinality of S ") is a measure of how many different elements S has.

- E.g., $|\varnothing|=0, \quad|\{1,2,3\}|=3, \quad|\{a, b\}|=2$, $|\{\{1,2,3\},\{4,5\}\}|=$

- If $|S| \in \mathbb{N}$, then we say S is finite. Otherwise, we say S is infinite.
-What are some infinite sets we've seen?
- $\mathbb{N}, \mathbb{Z}, \mathbb{R}$

09/02/2016

The Power Set Operation

- Def. The power set $P(S)$ of a set S is the set of all subsets of $S . P(S): \equiv\{x \mid x \subseteq S\}$.
- E.g. $P(\{a, b\})=\{\varnothing,\{a\},\{b\},\{a, b\}\}$.
- Sometimes $\mathrm{P}(\mathrm{S})$ is written $2^{\text {S }}$.

Remark. For finite $S, \quad|P(S)|=2^{|S|}$.

- It turns out $\forall S:|P(S)|>|S|$, e.g. $|P(\mathbb{N})|>|\mathbb{N}|$.
- There are different sizes of infinite sets!

Ordered n-tuples

- These are like sets, except that duplicates matter, and the order makes a difference.
- Def. For $n \in \mathbf{N}$, an ordered n-tuple or a sequence or list of length n is written (a_{1}, $\left.a_{2}, \ldots, a_{n}\right)$. Its first element is a_{1}, etc.
- Note that $(1,2) \neq(2,1) \neq(2,1,1) . \leftarrow \begin{aligned} & \text { Contrast with } \\ & \text { sets' }\{ \}\end{aligned}$
- Empty sequence, singlets, pairs, triples, quadruples, quintuples,...,n-tuples.

Cartesian Products

- Def. For sets A, B, their Cartesian product $A \times B: \equiv\{(a, b) \mid a \in A \wedge b \in B\}$.
- E.g. $\{a, b\} \times\{1,2\}=\{(a, 1),(a, 2),(b, 1),(b, 2)\}$ (AxB is a set of ORDERED n-tuples)
- For finite $A, B, \quad|A \times B|=|A||B|$.
- The Cartesian product is not commutative $\neg \forall A B: A \times B=B \times A$.
- Extends to $A_{1} \times A_{2} \times \ldots \times A_{n} \ldots$

09/02/2016 (1596-1650)

Start §2.2: The Union Operator

- Def. For sets A, B, their union $A \cup B$ is the SET containing all elements that are either in A, or (" \vee ") in B (or, of course, in both).
- Formally, $\forall A, B: A \cup B=\{x \mid x \in A \vee x \in B\}$.

Remark. $A \cup B$ is a superset of both A and B
(in fact, it is the smallest such superset):
$\forall A, B:(A \cup B \supseteq A) \wedge(A \cup B \supseteq B)$

Review: Set Notations So Far

- Variable objects x, y, z; sets S, T, U.
- Literal set $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and set-builder $\{x \mid P(x)\}$.
- \in relational operator, and the empty set \varnothing.
- Set relations $=, \subseteq, \supseteq, \subset, \supset, \not \subset$, etc.
- Venn diagrams.
- Cardinality $|S|$ and infinite sets $\mathbb{N}, \mathbb{Z}, \mathbb{R}$.
- Power sets $\mathrm{P}(\mathrm{S})$.

Union Examples

- $\{a, b, c\} \cup\{2,3\}=\{a, b, c, 2,3\}$
- $\{2,3,5\} \cup\{3,5,7\}=\{2,3,5,3,5,7\}=\{2,3,5,7\}$

Think "The United States of America includes every person who worked in any U.S. state last year." (This is how the IRS sees it...)

The Intersection Operator

Def. For sets A, B, their intersection $A \cap B$ is the set containing all elements that are simultaneously in A and (" \wedge ") in B.

- Formally, $\forall A, B: A \cap B=\{x \mid x \in A \wedge x \in B\}$.

Remark. $A \cap B$ is a subset of both A and B (in fact it is the largest such subset):
$\forall A, B:(A \cap B \subseteq A) \wedge(A \cap B \subseteq B)$

Intersection Examples

- $\{a, b, c\} \cap\{2,3\}=$ \qquad
- $\{2,4,6\} \cap\{3,4,5\}=$ \qquad

Think "The intersection of W Franklin St. and J efferson St. is just that part of the road surface that lies on both streets."

09/02/2016

Inclusion-Exclusion Principle

- How many elements are in $A \cup B$?
$|A \cup B|=|A|+|B|-|A \cap B|$
- Example: How many students are on our class email list? Consider set $E=I \cup M$, $I=\{s \mid s$ turned in an information sheet $\}$ $M=\{s \mid s$ sent the TAs their email address $\}$
- Some students did both!
$|E|=|/ \cup M|=|I|+|M|-|I \cap M|$
Subtract out items in intersection, to compensate for
09/02/2016
double-counting them!

Set Difference

Def. For sets A, B, the difference of A and B, written $A-B$, is the set of all elements that are in A but not B.

- Formally:

$$
\begin{aligned}
A-B & : \equiv\{x \mid x \in A \wedge x \notin B\} \\
& =\{x \mid \neg(x \in A \rightarrow x \in B)\}
\end{aligned}
$$

- Also called:

The complement of B with respect to A.

Set Difference Examples

- (1, $4,7,4)$,, $6 .-\{2,3,5,7,9,11\}=$

$$
\{1,4,6\}
$$

- $\mathbb{Z}-\mathbb{N}=\{\ldots,-1,0,1,2, \ldots\}-\{0,1, \ldots\}$ $=\{x \mid x$ is an integer but not a nat. \# $\}$
$=\{x \mid x$ is a negative integer $\}$
$=\{\ldots,-3,-2,-1\}$

Set Complements

- Def. The universe of discourse can itself be considered a set, call it U.
- When the context clearly defines U, we say that for any set $A \subseteq U$, the complement of A, written \bar{A}, is the complement of A w.r.t. U, i.e., it is U-A.
- E.g., If $U=\mathbf{N}, \quad \overline{\{3,5\}}=\{0,1,2,4,6,7, \ldots\}$

More on Set Complements

- An equivalent definition, when U is clear:

09/02/2016

Set Identities

- Identity: $\quad A \cup \varnothing=A=A \cap U$
- Domination: $A \cup U=U, A \cap \varnothing=\varnothing$
- Idempotent: $A \cup A=A=A \cap A$
- Double complement: $\overline{(\bar{A})}=A$
- Commutative: $A \cup B=B \cup A$, $A \cap B=B \cap A$
- Associative: $A \cup(B \cup C)=(A \cup B) \cup C$,

$$
A \cap(B \cap C)=(A \cap B) \cap C
$$

DeMorgan's Law for Sets

- Exactly analogous to (and provable from) DeMorgan's Law for propositions.

$$
\begin{aligned}
& \overline{A \cup B}=\bar{A} \cap \bar{B} \\
& \overline{A \cap B}=\bar{A} \cup \bar{B}
\end{aligned}
$$

Proving Set Identities

- To prove statements about sets, of the form
$E_{1}=E_{2}$ (where the Es are set expressions), here are three useful techniques:
- 1. Prove $E_{1} \subseteq E_{2}$ and $E_{2} \subseteq E_{1}$ separately.
- 2. Use set builder notation \& logical equivalences.
- 3. Use a membership table.

09/02/2016

Method 1: Mutual subsets

- Example:
- Show $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.
- Part 1: Show $A \cap(B \cup C) \subseteq(A \cap B) \cup(A \cap C)$.
- Assume $x \in A \cap(B \cup C)$, \& show $x \in(A \cap B) \cup(A \cap C)$.
- We know that $x \in A$, and either $x \in B$ or $x \in C$.
- Case 1: $x \in B$. Then $x \in A \cap B$, so $x \in(A \cap B) \cup(A \cap C)$.
- Case 2: $x \in C$. Then $x \in A \cap C$, so $x \in(A \cap B) \cup(A \cap C)$.
- Therefore, $x \in(A \cap B) \cup(A \cap C)$.
- Therefore, $A \cap(B \cup C) \subseteq(A \cap B) \cup(A \cap C)$.
- Part 2: Show $(A \cap B) \cup(A \cap C) \subseteq A \cap(B \cup C)$...

09/02/2016

Method 2: Use set builder notation \& logical equivalences

- Show $\overline{A \cap B}=\bar{A} \cup \bar{B}$

See Ex.11, page 125 in edition 6 of our textbook

09/02/2016

Method 3: Membership Tables

- Just like truth tables for propositional logic.
- Columns for different set expressions.
- Rows for all combinations of memberships in constituent sets.
- Use " 1 " to indicate membership in the derived set, "0" for non-membership.
(trick is, use MAX for \cup, and \min for \cap)
- Prove equivalence with identical columns.

Membership Table Example

- Prove $(A \cup B)-B=A-B$.

Hint: think about an element x which does or doesn't belong to A and/or B

$$
A-B: \equiv\{x \mid x \in A \wedge x \notin B\}
$$

A	B	$A \cup B$	$(A \cup B)-B$	$A-B$
0	0	0		
0	1	1		
1	0	1		
1	1	1		
0				
0				

09/02/2016

Membership Table Exercise

- Prove $(A \cup B)-C=(A-C) \cup(B-C)$.

A B C	$A \cup B$	$(A \cup B)-C$	A-C	$B-C$	$(A-C) \cup(B-C)$
000	0	0	0	0	0
001	0	0	0	0	0
010	1	1	0	1	1
011	1	0	0	0	0
100	1	1	1	0	1
101	1	0	0	0	0
110	1	1	1	1	1
111	1	0	0	0	0

09/02/2016

Generalized Unions \& Intersections

- Since union \& intersection are commutative and associative, we can extend them from operating on ordered pairs of sets (A, B) to operating on sequences of sets $\left(A_{1}, \ldots, A_{n}\right)$, or even on unordered sets of sets,

$$
X=\{A \mid P(A)\} .
$$

09/02/2016

Generalized Union

- Binary union operator:
- $A \cup B$
- n-ary union:
$A \cup A_{2} \cup \ldots \cup A_{n}: \equiv\left(\left(\ldots\left(\left(A_{1} \cup A_{2}\right) \cup \ldots\right) \cup A_{n}\right)\right.$ (grouping \& order is irrelevant)
- "Big U" notation: $\bigcup_{i=1}^{n} A_{i}$
- or for infinite sets of sets: $\bigcup_{A \in X} A$

Generalized Intersection

- Binary intersection operator:
- $A \cap B$
- n-ary intersection:
$A_{1} \cap A_{2} \cap \ldots \cap A_{n} \equiv\left(\left(\ldots\left(\left(A_{1} \cap A_{2}\right) \cap \ldots\right) \cap A_{n}\right)\right.$ (grouping \& order is irrelevant)
- "Big Arch" notation:
$\bigcap_{i=1}^{n} A_{i}$
- or for infinite sets of sets: $\bigcap_{A \in X} A$

09/02/2016

Representations

- A frequent theme of this course will be methods of representing one discrete structure using another discrete structure of a different type.
- E.g., one can represent natural numbers as
- Sets: $\mathbf{0}:=\varnothing, \mathbf{1}:=\{0\}, \mathbf{2}:\{\mathbf{0 , 1}\}, \mathbf{3}:=\{\mathbf{0}, \mathbf{1}, 2\}, \ldots$
- Bit strings:
$0:=0,1:=1,2:=10,3:=11,4:=100, \ldots$

09/02/2016

Review: Set Operations § 2.2

- Union
- Intersection
- Set difference
- Set complements
- Set identities
- Set equality proof techniques:
- Mutual subsets.
- Derivation using logical equivalences.
- Set representations

Representing Sets with Bit Strings

- For an enumerable u.d. U with ordering x_{1}, x_{2}, \ldots, represent a finite set $S \subseteq U$ as the finite bit string $\mathrm{B}=b_{1} b_{2} \ldots b_{n}$ where $\forall i: x_{i} \in S \leftrightarrow\left(i<n \wedge b_{i}=1\right)$.
- E.g. $U=\mathbf{N}, S=\{2,3,5,7,11\}$, $B=01101010001$.

References

- Rosen

Discrete Mathematics and its Applications, 6e Mc GrawHill, 2007

